李红娇

作者: 时间:2021-11-24

    李红娇  

职务:特聘副研究员

招生方向:多尺度理论模拟电化学催化、二次可充电电池、燃料电池

邮箱:hongjiao.li@scu.edu.cn

地址:四川大学江安一基楼501室

一、个人简介:

李红娇,女,毕业于天津大学化工学院。主要从事多尺度理论模拟,包括量子化学模拟、蒙特卡洛计算、宏观动力学模拟等在电化学催化材料、可充电电池材料等领域的应用研究。,发表SCI/EI论文十多篇,其中以第一作者或通讯作者身份发表高水平SCI论文5篇,包括JACS两篇。担任多个杂志审稿人。

二、工作经历

2021.01~至今:四川大学化学工程学院特聘副研究员

2019.04~2020.12:德国卡尔斯鲁厄理工大学(KIT)博士后兼课题小组组长

2014.08~2016.01:德国慕尼黑工业大学(TUM)博士后

三、教育经历

2009.09~2014.06:天津大学化工学院工业催化专业,博士

2012.01~2013.12:荷兰莱顿大学化学院表面催化与电化学课题组,联合培养博士

2005.09~2009.06:天津大学化工学院化学工程与工艺专业,本科

四、研究领域

量子化学模拟(DFT,AIMD)

动力学蒙特卡洛算法

宏观动力学模型

电化学实验与表征

五、科研项目

1.德国德国科学基金会(DFG),重点项目,DFG STI 74/24-1 For1376,Elementary Reactions steps in electrocatalysis: Theory meets experiment Project P6: Electrocatalytic activity of nanostructured electrodes,2014-08至2016-01,30万欧元,项目实施人。

六、代表性成果:

1.Li H., Li Y., Koper M.T.M., Calle-Vallejo F. (2014): Bond making and breaking between carbon, nitrogen and oxygen. J. Am. Chem. Soc. 136, 15694-15701.

2.Li H., Calle-Vallejo F., Kolb M.J., Kwon Y., Li Y., Koper M.T.M. (2013): Why (100) terraces break and make bonds: oxidation of dimethyl ether on platinum single crystal electrodes. J. Am. Chem. Soc. 135, 14329-14338.

3.Li H.,Zhao Y., Wang Y., Li Y. (2015): Sr2Fe2−xMoxO6−δperovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio. Catalysis Today, 259, 417-422.

4.Li H., Tian Y., et al. (2012): An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode, RSC Adv.. 2, 3857-3863.

5.Li H., Liu Q., Li Y. (2010): A carbon in molten carbonate anode model for a direct carbon fuel cell. Electrochim. Acta 55, 1958-1965. (citation: 57 from google scholar)

6.Huang Z., Kay C.W.M., Kuttich B., Rauber D.,Li H., Kim S., Chen R. (2020): An “interaction-mediating” strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. Nano Energy 69, 104464.

7.Katsounaros I., Figueiredo M.C., Calle-Vallejo F.,Li H.,Andrew A. Gewirth A.A., Markovic N.M., Koper M.T.M. (2018): On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment. J. Catal. 359, 82-91.

8.Chen T.,Li H., et al. (2015): Surface Modification of Pt(100) for Electrocatalytic Nitrate Reduction to Dinitrogen in Alkaline Solution. Langmuir. 31, 3277-3281.

9.Wang Y., Li P.,Li H., Zhao Y., Li Y. (2015): Synthesis and enhanced electrochemical performance of Smdoped Sr2Fe1.5Mo0.5O6. Fuel Cells 14, 973-978.

10.Aaronson B.D.B., Chen C.H.,Li H.,Koper M.T.M., Lai S.C.S., Unwin P.R. (2013): Pseudo-Single-Crystal Electrochemistry on Polycrystalline Electrodes: Visualizing Activity at Grains and Grain Boundaries on Platinum for the Fe2+/Fe3+ Redox Reaction, J. Am. Chem. Soc. 135, 3873-3880.

11.Zhao Y., Xia C., Jia L., Wang Z.,Li H., et al (2013): Recent progress on solid oxide fuel cell: lowering temperature and utilization non-hydrogen fuels, Int. J. Hydrogen Energ., 38, 16498-16517.

12.Liu Q., Tian Y.,Li H.,Jia L., Xia C., Thompsonb L.T. (2010): High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation, J. Power Sources. 195, 6532-6538.

13.Liu Q., Tian Y.,Li H.,Jia L., Xia C., Thompsonb L.T. (2010): High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part II. Exergy analysis. J. Power Sources. 195, 6532-6538.


© 2020 LB Research Group, University of SiChuan. All Rights Reserved.    Please contact the LB with comments, questions, or suggestions.